Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
IEEE Sensors Journal ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20237396

ABSTRACT

A technique is implemented for the generation of multiple Fano-resonances in a plasmonic waveguide based rectangular cavity. A rectangular cavity provides four Fano peaks which can further be increased to nine by inserting the metallic bars in it. The trapped surface plasmon polaritons by metallic bars cause the generation of multiple Fano peaks over the wavelength range of 450 nm - 1300 nm. The obtained response is validated through Fano profile and Fano shape parameter is calculated for each resonance peak. The performance of the proposed device is numerically studied as refractive index sensor and method for analyzing the detection of pathogenic virus like SARS-Cov-2 is reported. Out of nine Fano peaks, the best values of sensing performance indices are obtained with full-width, half-maxima of 1.7 nm, quality factor of 405, sensitivity of 1145.71 nm/RIU and figure of merit of 393.25 RIU-1. IEEE

2.
2022 Asia Communications and Photonics Conference, ACP 2022 and International Conference on Information Photonics and Optical Communications, IPOC 2022 ; 2022-November:2025-2028, 2022.
Article in English | Scopus | ID: covidwho-2320959

ABSTRACT

The emergence of the Covid-19 pandemic has drawn great attention to vulnerable people affected by major diseases. Among them, Alzheimer's disease (AD) is the most prevalent disease. However, a long-standing challenge is to achieve early diagnosis of AD by detecting biomarkers such as amyloid beta (Aβ42), thus avoiding the labor of specialized hospital personnel and the high cost of imaging examinations using positron emission tomography. In this paper, we report a straightforward approach to realize a non-invasive lab-around fiber (LaF) optical sensor for AD biomarker detection, which is based on a tilted fiber Bragg grating (TFBG) combined with a nanoscale metallic thin film. We successfully demonstrated the detection of Aβ42 in complex biological matrices with a detection limit of 5 pg/mL. Therefore, our TFBG-SPR biosensor platform enables large-scale early disease screening and has great potential for clinical applications in early AD diagnosis. © 2022 IEEE.

3.
Encyclopedia of Sensors and Biosensors: Volume 1-4, First Edition ; 1-4:316-353, 2022.
Article in English | Scopus | ID: covidwho-2295116

ABSTRACT

Light is being vastly explored towards favoring the advancement of technology and the improvement of the life quality of the population. Photonic materials that can manipulate light in a nanometric scale have become very competitive for the construction of chemical and bio sensors, mainly because they can be more sensitive, specific, and of a lower cost. Considering the serious health crisis experienced worldwide due to COVID-19, the importance of research in this field has become even clearer and greater. In this article, sensing platforms based on the exciting and promising plasmonic materials is broadly addressed. The sections covered here seek not just to introduce the theoretical concepts and state-of-the-art techniques, but also highlight the achieved advances and inspire future research on this rich and promising area. © 2023 Elsevier Ltd. All rights reserved

4.
Nanophotonics ; 2023.
Article in English | Scopus | ID: covidwho-2257643

ABSTRACT

This study theoretically demonstrated an insight for designing a novel tunable plasmonic biosensor, which was created by simply stacking a twisted bilayer graphene (TBG) superlattice onto a plasmonic gold thin film. To achieve ultrasensitive biosensing, the plasmonic biosensor was modulated by Goos-Hänchen (GH) shift. Interestingly, our proposed biosensor exhibited tunable biosensing ability, largely depending on the twisted angle. When the relative twisted angle was optimized to be 55.3°, such a configuration: 44 nm Au film/1-TBG superlattice could produce an ultralow reflectivity of 2.2038 × 10-9and ultra-large GH shift of 4.4785 × 104μm. For a small refractive index (RI) increment of 0.0012 RIU (refractive index unit) in sensing interface, the optimal configuration could offer an ultra-high GH shift detection sensitivity of 3.9570 × 107μm/RIU. More importantly, the optimal plasmonic configuration demonstrated a theoretical possibility of quantitatively monitoring severe acute respiratory syndrome coronavirus (SARS-CoV-2) and human hemoglobin. Considering an extremely small RI change as little as 3 × 10-7RIU, a good linear response between detection concentration of SARS-CoV-2 and changes in differential GH shift was studied. For SARS-CoV-2, a linear detection interval was obtained from 0 to 2 nM. For human hemoglobin, a linear detection range was achieved from 0 to 0.002 g/L. Our work will be important to develop novel TBG-enhanced biosensors for quantitatively detecting microorganisms and biomolecules in biomedical application. © 2023 the author(s), published by De Gruyter, Berlin/Boston 2023.

5.
2022 Applied Optics and Photonics China: Optoelectronics and Nanophotonics, AOPC 2022 ; 12556, 2023.
Article in English | Scopus | ID: covidwho-2288987

ABSTRACT

In this study, we theoretically propose a surface plasmon resonance (SPR) biosensor composed of a plasmonic gold film, double negative (DNG) metamaterial, graphene-MoS2-COOH Van der Waals heterostructures and gold nanoparticles (Au NPs). We use a novel scheme of Goos-Hanchen (GH) shift to study the biosensing performances of our proposed plasmonic biosensor. The calculation results show that, both an extreme low reflectivity of 8.52×10-10 and significantly enhanced GH sensitivity of 2.1530×107 μm/RIU can be obtained, corresponding to the optimal configuration: 32 nm Au film/120 nm metamaterial/4-layer graphene/4-layer MoS2-COOH. In addition, there is a theoretically excellent linear response between the concentration of target analytes (SARS-CoV-2 and S protein) and the change in differential GH shift. Our proposed biosensor promises to be a useful tool for performing the novel coronavirus detection. © 2023 SPIE.

6.
Biosensors (Basel) ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2251637

ABSTRACT

Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Biosensing Techniques/methods , COVID-19/diagnosis , SARS-CoV-2 , Spectrum Analysis, Raman/methods , Machine Learning , COVID-19 Testing
7.
Electronics (Switzerland) ; 12(1), 2023.
Article in English | Scopus | ID: covidwho-2243063

ABSTRACT

The recent pandemic of SARS-CoV-2 virus has made evident critical issues relating to virus sensing and the need for deployable tools for adequate, rapid, effective viral recognition on a large-scale. Although many conventional molecular and immuno-based techniques are widely used for these purposes, they still have some drawbacks concerning sensitivity, safety, laboriousness, long-term collection and data analysis. Therefore, new rapidly emerging approaches have been introduced such as terahertz (THz)-based technologies. In this contribution, we summarize the emerging THz radiation technology, its solutions and applications for high-sensitivity viral detection. © 2022 by the authors.

8.
IEEE Journal of Selected Topics in Quantum Electronics ; 29(4), 2023.
Article in English | Scopus | ID: covidwho-2235528

ABSTRACT

Plasmonic metasurface biosensing has shown great potential in label-free detection of bio-nanoparticles with various sizes, such as cancer antigens, exosomes and SARS-CoV-2 virus. It typically relies on the immunoassay, but current studies usually neglect the perfect size matching between each target bio-nanoparticle and the surface near-field domain, which should be very critical for the enhancement of detection performance. In order to maximize the immunodetection capability for each bio-nanoparticle, we propose a plasmonic meta-biosensor based on the field-customized mechanism. Our design overcomes the serious interference of biofunctionalization and accomplishes a sensitivity of 27 times higher than the conventional nanoplasmonic counterpart. Our method also builds the important basis of single bio-nanoparticle immunodetection by a plasmonic metasurface. The customized plasmonic metasensing study implies a promising way towards ultra-low concentration biosensing or even single bio-nanoparticle detection for high-performance point-of-care-testing in the near future. © 1995-2012 IEEE.

9.
IEEE Journal of Selected Topics in Quantum Electronics ; 29(4: Biophotonics):1-8, 2023.
Article in English | ProQuest Central | ID: covidwho-2213350

ABSTRACT

Plasmonic metasurface biosensing has shown great potential in label-free detection of bio-nanoparticles with various sizes, such as cancer antigens, exosomes and SARS-CoV-2 virus. It typically relies on the immunoassay, but current studies usually neglect the perfect size matching between each target bio-nanoparticle and the surface near-field domain, which should be very critical for the enhancement of detection performance. In order to maximize the immunodetection capability for each bio-nanoparticle, we propose a plasmonic meta-biosensor based on the field-customized mechanism. Our design overcomes the serious interference of biofunctionalization and accomplishes a sensitivity of 27 times higher than the conventional nanoplasmonic counterpart. Our method also builds the important basis of single bio-nanoparticle immunodetection by a plasmonic metasurface. The customized plasmonic metasensing study implies a promising way towards ultra-low concentration biosensing or even single bio-nanoparticle detection for high-performance point-of-care-testing in the near future.

10.
ACS Appl Mater Interfaces ; 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2133170

ABSTRACT

Human respiratory aerosols contain diverse potential biomarkers for early disease diagnosis. Here, we report the direct and label-free detection of SARS-CoV-2 in respiratory aerosols using a highly adsorptive Au-TiO2 nanocomposite SERS face mask and an ablation-assisted autoencoder. The Au-TiO2 SERS face mask continuously preconcentrates and efficiently captures the oronasal aerosols, which substantially enhances the SERS signal intensities by 47% compared to simple Au nanoislands. The ultrasensitive Au-TiO2 nanocomposites also demonstrate the successful detection of SARS-CoV-2 spike proteins in artificial respiratory aerosols at a 100 pM concentration level. The deep learning-based autoencoder, followed by the partial ablation of nondiscriminant SERS features of spike proteins, allows a quantitative assay of the 101-104 pfu/mL SARS-CoV-2 lysates (comparable to 19-29 PCR cyclic threshold from COVID-19 patients) in aerosols with an accuracy of over 98%. The Au-TiO2 SERS face mask provides a platform for breath biopsy for the detection of various biomarkers in respiratory aerosols.

11.
Adv Sci (Weinh) ; : e2204774, 2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2094140

ABSTRACT

On-site quantification and early-stage infection risk assessment of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high spatiotemporal resolution is a promising approach for mitigating the spread of coronavirus disease 2019 (COVID-19) pandemic and informing life-saving decisions. Here, a condensation (hygroscopic growth)-assisted bioaerosol collection and plasmonic photothermal sensing (CAPS) system for on-site quantitative risk analysis of SARS-CoV-2 virus-laden aerosols is presented. The CAPS system provided rapid thermoplasmonic biosensing results after an aerosol-to-hydrosol sampling process in COVID-19-related environments including a hospital and a nursing home. The detection limit reached 0.25 copies/µL in the complex aerosol background without further purification. More importantly, the CAPS system enabled direct measurement of the SARS-CoV-2 virus exposures with high spatiotemporal resolution. Measurement and feedback of the results to healthcare workers and patients via a QR-code are completed within two hours. Based on a dose-responseµ model, it is used the plasmonic biosensing signal to calculate probabilities of SARS-CoV-2 infection risk and estimate maximum exposure durations to an acceptable risk threshold in different environmental settings.

12.
Encyclopedia of Sensors and Biosensors (First Edition) ; : 316-353, 2023.
Article in English | ScienceDirect | ID: covidwho-2060201

ABSTRACT

Light is being vastly explored towards favoring the advancement of technology and the improvement of the life quality of the population. Photonic materials that can manipulate light in a nanometric scale have become very competitive for the construction of chemical and bio sensors, mainly because they can be more sensitive, specific, and of a lower cost. Considering the serious health crisis experienced worldwide due to COVID-19, the importance of research in this field has become even clearer and greater. In this article, sensing platforms based on the exciting and promising plasmonic materials is broadly addressed. The sections covered here seek not just to introduce the theoretical concepts and state-of-the-art techniques, but also highlight the achieved advances and inspire future research on this rich and promising area.

13.
2nd International Conference on Medical Imaging and Additive Manufacturing, ICMIAM 2022 ; 12179, 2022.
Article in English | Scopus | ID: covidwho-2029448

ABSTRACT

Plasmonic nanobiosensors have an enormous application range. It has the capacity to detect a wide variety of substances including metal, protein and even nucleic acids due to the superiority of SPR and LSPR. Plasmonic biosensors have been widely applied in the field of disease diagnosis, environmental conservation and food safety, eliminating barriers of traditional diagnosis methods and providing sensitive, quick and label-free devices. The applications of plasmonic biosensors in detection of many concerned diseases like cancer and SARS-CoV-2 are making an improvement on our medical condition. In the field of environmental protection, plasmonic-based biosensors also show great potential. They can efficiently detect two main types of contaminants, inorganic heavy metals involving Pb, Cd, As and Hg, and organic pollutants like polycyclic aromatic hydrocarbons (PAHs). Plasmonic biosensors could also overcome challenges on food allergen detection. This paper mainly focusses on SPR and LSPR-based nanobiosensors' application in environmental protection, food safety and health-care. © 2022 SPIE. Downloading of the is permitted for personal use only.

14.
Clinical and Translational Biophotonics, Translational 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2012125

ABSTRACT

Localized surface plasmon resonance of Au nanodots array are very sensitive and resonance field disturbance due to 100 nm sized SARS-CoV-2 virus can be detected via resonance wavelength shift. We have proposed Au nanodots (100 nm diameter and 200 nm pitch) array plasmonic biosensing platform for SARS-CoV-2 virus detection. © 2022 The Author(s).

15.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 147-148, 2021.
Article in English | Scopus | ID: covidwho-2011699

ABSTRACT

Rapid polymerase chain reaction (PCR) utilizing plasmon-driven photothermal cycling requires real-time quantification of amplicons during PCR and miniaturization of real-time PCR (qPCR) system for point-of-care (POC) diagnostics. In this work, we have demonstrated handheld photothermal qPCR system with disposable aluminum PCR chips for the ultrafast amplification and real-time quantification of plasmids expressing SARSCoV-2 envelope protein within 5 min. This novel system provides stable and useful point-of-care diagnostic platform for prevention of fast-spreading pandemic in airport and harbor. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

16.
Chemosensors ; 10(7):237, 2022.
Article in English | ProQuest Central | ID: covidwho-1963756

ABSTRACT

Plasmonic phenomena and materials have been extensively investigated for a long time and gained popularity in the last few years, finding in the design of the biosensors platforms promising applications offering devices with excellent performances. Hybrid systems composed of graphene, or other 2D materials, and plasmonic metal nanostructures present extraordinary optical properties originated from the synergic connection between plasmonic optical effects and the unusual physicochemical properties of 2D materials, thus improving their application in a broad range of fields. In this work, firstly, an overview of the structures and properties of 2D nanomaterials will be provided along with the physics of surface plasmon resonance and localized surface plasmon resonance. In the second part of the work, some examples of colorimetric biosensors exploiting the outstanding properties of hybrids nanocomposites will be presented. Finally, concluding perspectives on the actual status, challenges, and future directions in plasmonic sensing biosensing will be provided. Special emphasis will be given to how this technology can be used to support digitalization and virtualization in pandemic handling.

17.
ACS Infect Dis ; 8(8): 1468-1479, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1960247

ABSTRACT

Serological testing for acute infection or prior exposure is critical for patient management and coordination of public health decisions during outbreaks. Current methods have several limitations, including variable performance, relatively low analytical and clinical sensitivity, and poor detection due to antigenic drift. Serological methods for SARS-CoV-2 detection for the ongoing COVID-19 pandemic suffer from several of these limitations and serves as a reminder of the critical need for new technologies. Here, we describe the use of ultrabright fluorescent reagents, Plasmonic Fluors, coupled with antigen arrays that address a subset of these limitations. We demonstrate its application using patient samples in SARS-CoV-2 serological assays. In our multiplexed assay, SARS-CoV-2 antigens were spotted into 48-plex arrays within a single well of a 96-well plate and used to evaluate remnant laboratory samples of SARS-CoV-2 positive patients. Signal-readout was performed with Auragent Bioscience's Empower microplate reader, and microarray analysis software. Sample volumes of 1 µL were used. High sensitivity of the Plasmonic Fluors combined with the array format enabled us to profile patient serological response to eight distinct SARS-CoV-2 antigens and evaluate responses to IgG, IgM, and IgA. Sensitivities for SARS-CoV-2 antigens during the symptomatic state ranged between 72.5 and 95.0%, specificity between 62.5 and 100%, and the resulting area under the curve values between 0.76 and 0.97. Together, these results highlight the increased sensitivity for low sample volumes and multiplex capability. These characteristics make Plasmonic Fluor-enhanced antigen arrays an attractive technology for serological studies for the COVID-19 pandemic and beyond.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Pandemics , Sensitivity and Specificity
18.
Biology (Basel) ; 11(5)2022 Apr 19.
Article in English | MEDLINE | ID: covidwho-1875466

ABSTRACT

Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.

19.
15th IEEE International Conference on Nano/Molecular Medicine and Engineering, NANOMED 2021 ; 2021-November:23-27, 2021.
Article in English | Scopus | ID: covidwho-1874332

ABSTRACT

The current impact of COVID-19 on global health and the economy is enormous. Considering pandemic severity, there is an urgent need to develop a smart biosensor that can provide early detection of SARS-CoV-2 viruses with robust and reliable results. In this work, we have systematically developed a plasmonic-based biosensor chip for the early detection of the COVID-19 virus by providing fast and reliable results. The label-free plasmonic sensor utilizes light and detects the resonance oscillation of surface-bound free conduction electrons in the presence of the target analyte biomarker (virus), resulting in binding and affinity incidents at the surface of plasmonic gold (Au) material, causing a shift in the resonance wavelength. The results show the ability of biosensor to exhibit an increased shift in the resonance wavelength upon binding of the COVID-19 virus because of the change in the optical property, i.e., the refractive index of the medium in the vicinity of the Au film. This study further demonstrated the fabrication and performance optimization of the plasmonic biosensor for the potential point-of-care testing device. © 2021 IEEE.

20.
Biomedical Vibrational Spectroscopy 2022: Advances in Research and Industry ; 11957, 2022.
Article in English | Scopus | ID: covidwho-1861564

ABSTRACT

The real-Time polymerase chain reaction (RT-PCR) analysis using nasal swab samples is the gold standard approach for COVID-19 diagnosis. However, due to the high false-negative rate at lower viral loads and complex test procedure, PCR is not suitable for fast mass screening. Therefore, the need for a highly sensitive and rapid detection system based on easily collected fluids such as saliva during the pandemic has emerged. In this study, we present a surface-enhanced Raman spectroscopy (SERS) metasurface optimized with genetic algorithm (GA) to detect SARS-CoV-2 directly using unprocessed saliva samples. During the GA optimization, the electromagnetic field profiles were used to calculate the field enhancement of each structure and the fitness values to determine the performance of the generated substrates. The obtained design was fabricated using electron beam lithography, and the simulation results were compared with the test results using methylene blue fluorescence dye. After the performance of the system was validated, the SERS substrate was tested with inactivated SARS-CoV-2 virus for virus detection, viral load analysis, cross-reactivity, and variant detection using machine learning models. After the inactivated virus tests are completed, with 36 PCR positive and 33 negative clinical samples, we were able to detect the SARS-CoV-2 positive samples from Raman spectra with 95.2% sensitivity and specificity. © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.

SELECTION OF CITATIONS
SEARCH DETAIL